Last time we finished off by showing that the SVD provides a natural way to approximate matrices by low-rank matrices. Why is this important?
Recall that the SVD $A=V D U^{\top}=[v][D]\left[u^{\top}\right]=\sum_{i=1}^{r} \sigma_{i} v_{i} u_{i}^{\top}$ gives an optimal
rank-k approximation $\quad A_{k}=\sum_{i=1}^{k} \sigma_{i} v_{i} u_{i}^{\top}=\left[v_{k}\right]\left[D_{k}\right]\left[u_{k}^{\top}\right]$,
which is formed by taking only the top-k singular values and singular vectors.

But computing an SVD requires computing singular vectors and values, which can be slow and memory intensive. Can we do something foster?
Thy 6.9 [Foundations of Data Science, 2020, Plum, Hopcrott, Kannan] Let $A \in \mathbb{R}^{m \times n}$, and $r, s \in \mathbb{Z}^{+}$. A_{i} are rows of A.

Let $C \in \mathbb{R}^{m \times s}=\left[C^{1} \cdots C^{s}\right]$ chosen by randomly sampling A^{i} as follows:

$$
C^{i}=A^{j} \text { with probability } \frac{\left\|A^{j}\right\|_{2}^{2}}{\|A\|_{F}^{2}} \text {. }
$$

Let $R \in \mathbb{R}^{r \times n}=\left[\begin{array}{c}R^{\prime} \\ \vdots \\ R^{r}\end{array}\right]$ chose by randomly samply rows A_{i} as follows"

$$
R^{i}=A \text {. with probability } \frac{\left\|A_{j}\right\|_{2}^{2}}{\ldots{ }^{2}} \text {. }
$$

$$
R^{i}=A_{j} \text { with probability } \frac{\left\|A_{j}\right\|_{2}^{2}}{\|A\|_{F}^{2}}
$$

Then there exists $U \in \mathbb{R}^{s \times r}$ s.t.

$$
\mathbb{E}\left(\|A-c u R\|_{2}^{2}\right) \leq\|A\|_{F}^{2}\left(\frac{2}{\sqrt{r}}+\frac{2 r}{s}\right)
$$

If we fix s, we minimize error with $S^{2 / 3}$.
C loose $s=\frac{1}{\varepsilon^{3}}$ and $r=\frac{1}{\varepsilon^{2}}$. Then $\mathbb{E}\left(\|A-C U R\|_{2}^{2}\right)=O(\varepsilon)\|A\|_{F}^{2}$.
i.e. $A=\left[\begin{array}{c}A \\ n \times m\end{array}\right] \approx\left[\begin{array}{c}s_{\text {sample }} \\ \text { columns } \\ n \times s\end{array}\right]\left[\begin{array}{c}\text { multiplier } \\ s \times r\end{array}\right]\left[\begin{array}{c}\text { sample rus } \\ r \times m\end{array}\right]$

Matrix multiplication through sampling
Let $A \in \mathbb{R}^{m \times n}$
$B \in \mathbb{R}^{n \times p}$. We want to approximated $A B$ is less than O (map) time.

$$
A B=\left[\begin{array}{lll}
A^{\prime} & \cdots & A^{n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
\vdots \\
B_{n}
\end{array}\right]=\sum_{k=1}^{n} A^{k} B_{k} \quad \text { (outer products). }
$$

Let's try to sample $A B$ by taking components with prob. pile. i.e. Let $z=k$ w.p. p_{k} for $k \in\{1, \ldots, n\}$ a random variable.

Define $\quad X=\frac{1}{p_{z}} A^{z} B_{z}$, a matrix riv.
Then the entry-wise expectation

$$
\mathbb{E} X=\sum_{k=1}^{n} P(z=k) \cdot \frac{1}{P_{k}} A^{k} B_{k}=\sum_{k=1}^{n} A^{k} B_{k}=A B .
$$

But when using an estimator, we care about both mean and variance.
Def. $\operatorname{Var}(X)=\mathbb{E}\left(\|A B-X\|_{F}^{2}\right)$, the entry-wise variance.
Then $\operatorname{Var}(X)=\sum_{i=1}^{m} \sum_{j=1}^{D} \operatorname{Var}\left(x_{i j}\right)=\sum_{i, j} \mathbb{E}\left(x_{i j}^{2}\right)-\mathbb{E}\left(x_{i j}\right)^{2}=(\sum_{i j}\left(\sum_{k=1}^{n} P_{k} \cdot \frac{1}{p_{k}^{2}} \cdot a_{i k}^{2} \cdot b_{k j}^{2}\right)-\underbrace{\|A \beta\|_{F}^{2}}$ doesn't matier for
We want to choose p_{k}^{\prime} ' to minimize variance. optrizing PK.

Note: $\quad \sum_{i, j, k} \frac{1}{p_{k}} a_{i k}^{2} b_{k j}^{2}=\sum_{k} \frac{1}{p_{k}}\left\|A^{k}\right\|_{2}^{2}\left\|B_{k}\right\|_{2}^{2}$
Lemma: $\forall c_{k} \geq 0, \quad f\left(p_{1}, \ldots, p_{n}\right)=\sum_{k=1}^{n} \frac{c_{k}}{p_{k}}$, subject to the constraint $p_{1}+\cdots+p_{n}=1$, is minimized by $p_{k} \sim \sqrt{c_{k}}$.
proof.

$$
\begin{align*}
\text { So } & f\left(p_{2}, \ldots, p_{k}\right)=\frac{c_{1}}{1-\left(p_{2}+\cdots+p_{n}\right)}+\sum_{k=2}^{n} \frac{c_{k}}{p_{k}} \\
& \frac{\partial f}{\partial p_{k}}=\frac{c_{1}}{\left(1-\left(p_{2}+\cdots+p_{n}\right)\right)^{2}}-\frac{c_{k}}{p_{k}^{2}}=0 \quad \text { at optimum } \\
\Rightarrow & \frac{p_{k}}{1-\left(p_{2}+\cdots p_{n}\right)}=\sqrt{\frac{c_{k}}{c_{1}}} \\
\Rightarrow & p_{k}=\sqrt{c_{k}} \cdot \frac{1-\left(p_{2}+\cdots+p_{n}\right)}{\sqrt{c_{1}}} \quad \forall k \neq 1 .
\end{align*}
$$

Thus, we want to pick $p_{k} \sim\left\|A^{k}\right\|_{2}\left\|B_{k}\right\|_{2}$.

Note, when $B=A^{\top}, \quad p_{k} \sim\left\|A^{k}\right\|_{2}^{2} \quad$ (squared length of cols) Even if $B \neq A^{\top}$, this is still an upper bound on $\operatorname{Var}(X)$.

So use $p_{k}=\frac{\left\|A^{k}\right\|_{2}^{2}}{\|A\|_{F}^{2}}$.

$$
\Rightarrow \mathbb{E}\left(\|A B-X\|_{F}^{2}\right)=\operatorname{Var}(X) \leq\|A\|_{F}^{2} \sum_{k=1}^{n}\left\|B_{k}\right\|_{2}^{2}=\|A\|_{F}^{2}\|B\|_{F}^{2}
$$

Repent with s independent trials to get x_{1}, \ldots, x_{s}. Let $\chi=\frac{1}{s} \sum_{i=1}^{s} x_{i}$.
Then $\operatorname{Var}(\bar{X})=\frac{1}{s} \operatorname{Var}(X) \leq \frac{1}{s}\|A\|_{f}^{2}\|B\|_{f}^{2}$
Note: $\frac{1}{s} \sum_{i=1}^{s} X_{i}=\frac{1}{s}\left(\frac{A^{k_{1} B_{k_{1}}}}{P_{k_{1}}}+\cdots+\frac{A^{k_{s}} B_{k_{s}}}{P_{k_{s}}}\right)$, where each k_{i} is an ind chine of col.

$$
\begin{gathered}
=C R, \quad \text { where } \\
C=\left[\frac{A^{k_{1}}}{\sqrt{S_{P_{x_{1}}}}} \cdots \frac{A^{k_{s}}}{\sqrt{S_{P_{k_{s}}}}}\right], \quad R=\left[\begin{array}{c}
\frac{B_{k_{1}}}{\sqrt{S_{p_{k_{1}}}}} \\
\vdots \\
\frac{B_{k_{s}}}{\sqrt{S_{P_{k_{s}}}}}
\end{array}\right]
\end{gathered}
$$

The 6.5 Suppose $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p} . C R$ as given above is an estimator for $A B$, and the error is bounded

$$
\mathbb{E}\left(\|A B-C Q\|_{F}^{2}\right) \leq \frac{\left\|A O_{F}^{2}\right\| B \|_{F}^{3}}{s}
$$

To ensure $\mathbb{E}\left(\|A B-C R\|_{F}^{2}\right) \leq \varepsilon^{2}\|A\|_{f}^{2}\left\|\beta_{F}\right\|^{2}$ for sone $\varepsilon>0$, it suffices to make $s \geq \frac{1}{\varepsilon^{2}}$. Thus, $C R$ can be computed in $O(m s p)$ time. (often <O(mnp) fine)

Lemme 6.6: Given $R=V D U^{\top}$ an $S V D$, let $P=R^{+} R=U D^{+} V^{\top} R . \quad P$ is

Lemma 6.6: Given $R=V D U^{\top}$ an SVD, let $P=R^{+} R=U D^{+} V^{\top} R . \quad P$ is a projection operator satisfying:
(i) $P_{x}=x$ for every $x=R^{\top} y \quad$ (ie. $x \in c o l$ span of $R^{\top} /$ row span of R)
(ii) If $x \perp R^{\top} y \quad \forall y$, then $P_{x}=0$.
proof. : (i) If $x=R^{\top} y$ for some y, then

$$
\left(\begin{array}{ll}
\text { Note } & u^{\top} U=I \\
& v^{\top} v=I
\end{array}\right)
$$

$$
P_{x}=R^{+} R R^{T} y
$$

$$
=U D^{+} \underbrace{v^{\top} v D} \underbrace{U^{\top}} U D v^{\top} y
$$

$$
=U D^{+} D^{2} v^{\top} y=U D V^{\top} y
$$

$$
=R^{\top} y=x .
$$

(ii) If $x \perp R^{\top} y \quad \forall y$, then

$$
P_{x}=R^{+} R_{x}=U D^{+} v^{\top} V D U^{\top} x=U U^{\top} x .
$$

But each row of U^{\top} is a col of U and an eigenvector of $R^{\top} R$, and thus in the col span of $R^{\top} /$ row span of R.
But $x \perp R^{\top} y \quad \forall y$, so $U^{\top} x=0 \Rightarrow P_{x}=0$.
Prop. $6.7 A \approx A P$ and the error $\mathbb{E}\|A-A P\|_{2}^{2} \leq \frac{1}{\sqrt{r}}\|A\|_{F}^{2}$. proof. $\|A-A P\|_{2}^{2}=\max _{\|x\|_{2}=1}\left\|(A-A P)_{x}\right\|_{2}^{2}$

If $x \in \operatorname{row} \operatorname{space}(R)$, then $P_{x}=x$, so $\quad(A-A P)_{x}=0$.
By linearity $\max _{\|x\|_{2}=1}\left\|(A-A P)_{x}\right\|_{2}^{2}=\max _{\|x\|_{2}=1}\left\|(A-A P)_{x}\right\|_{2}^{2}=\max _{\|y\|_{2}=1}\|A x\|_{2}^{2}$.

$$
x \perp_{\text {row space }}(R) \quad x+\text { row space }^{2}(R)
$$

Note $\|A x\|_{2}^{2}=x^{\top} A^{\top} A x=x^{\top}\left(A^{\top} A-R^{\top} R\right) x \leq\left\|A^{\top} A-R^{\top} R\right\|_{2}$

$$
\Rightarrow\|A-A P\|_{2}^{2} \leq\left\|A^{\top} A-R^{\top} R\right\|_{2} \leq\left\|A^{\top} A-R^{\top} R\right\|_{F}
$$

Choose R by sampling r rows of A according to a length square distribution. (6.1s of A^{\top})
-. .. $1 .$. Hinlication samnlina $\mathbb{F}\|A-A P\|^{2}<\underline{\|A\|_{F}^{2}}$

Then by the matrix multiplication sampling, $\mathbb{E}\|A-A P\|_{2}^{2} \leq \frac{\|A\|_{F}^{2}}{\sqrt{r}}$
Prop. $6.8\|P\|_{F}^{2} \leq r$, if we chose R by sampling r rums of A and $P=R^{+} R$.
pf. $P=U D^{+} V^{\top} V D U^{\top}=U U^{\top}=U I_{q} U^{\top}$, where $q=\operatorname{rank}(R) \leq r$.
The $\|P\|_{F}^{2}=q \leq r$ because all the singular values are 1 .
Proof of matrix sketch $\mathbb{E}\left(\|A-C U R\|_{2}^{2}\right) \leq\|A\|_{F}^{2}\left(\frac{2}{\sqrt{r}}+\frac{2 r}{5}\right)$
Let's approximate AP by matrix multiplication sampling.
Let $C=s$ sampled cols of A.
$P^{\prime}=s$ sampled rows of $P=R^{+} R$
Then $C P^{\prime}=C \underbrace{\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right]}_{\text {sunpleyg matrix }} R^{+} R \equiv C U R$.
Then $\mathbb{E}\|A P-C U R\|_{2}^{2} \leq \mathbb{E}\|A P-C U R\|_{F}^{2} \leq \frac{\|A\|_{F}^{2}\|P\|_{F}^{2}}{s} \leq \frac{r}{s}\|A\|_{F}^{2}$.
But $\|A-C U R\|_{2} \leq\|A-A P\|_{2}+\|A P-C U R\|_{2}$

$$
\begin{aligned}
& \Rightarrow \quad\|A-C U R\|_{2}^{2} \leq 2\|A-A P\|_{2}^{2}+2\|A P-C U R\|_{2}^{2} \\
& \Rightarrow \quad \mathbb{E}\|A-C U R\|_{2}^{2} \leq \frac{2}{\sqrt{r}}\|A\|_{F}^{2}+\frac{2 r}{5}\|A\|_{F}^{2}
\end{aligned}
$$

